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Abstract —The advantages and difficulties associated with the nse of the

Coulomb gauge in solving source-excited boundary value problems of

electromagnetic are examined. The correct dyadic Green’s function for

the Coulomb vector potentiaf in a rectangular wavegnide is derived to

elucidate the discussion. A flaw in the usage of the Coulomb gauge in

Smythe’s Static and Dynamic Electricity is uncovered.

I. INTRODUCTION

T HE SOLUTION of boundary value problems of elec-

tromagnetic is often facilitated by the introduction of

the scalar and vector potentials, which are related by the

so-called gauge condition [1]. These potentials are not

unique and they depend on the gauge employed, the

Lorentz gauge being the most common choice. Occasion-

ally, the Coulomb gauge is used, usually when there are no

free charges [1]. The main purpose of this paper is to

discuss the advantages and difficulties associated with the

use of the Coulomb gauge in solving source-excited

boundary value problems of electromagnetic. To better

illustrate the ideas, we have selected for detailed analysis

the familiar rectangular waveguide geometry.

Smythe’s classical textbook [2] is the only reference

known to the authors in which the Coulomb gauge is

employed to solve problems involving arbitrarily oriented,

time-harmonic dipoles in waveguides and cavities. How-

ever, Smythe’s analysis contains a subtle flaw, which we

presume is not widely known to the electromagnetic com-

munity. This flaw, its origins and ways to remedy it are

also addressed in this paper.

After the preliminaries of Section II, we derive in Sec-

tion III the Coulomb dyadic Green’s function for the

rectangular waveguide by the eigenfunction expansion

method [3], [4], which enables us to identify terms that are

missing in the corresponding expressions given by Smythe
[2]. In Section IV, we summarize Smythe’s approach and

point out its flaw. We draw conclusions and make recom-

mendations in Section V.

II. PRELIMINARIES

The problem of interest is that of finding the electro-

magnetic field due to a time-harmonic ( eJ“f time conven-

tion) dipole in a homogeneous medium characterized by

permittivity c and permeability p and enclosed, at least

partially, by a perfectly conducting surface S having a unit

normal vector A.

We introduce the magnetic vector potential A in the

usual manner by relating it to the magnetic field asl

H= LVXA
P

1
= –V XAS.

P
(1)

It then follows from Maxwell’s equations that under the

Coulomb condition, v .A1 = O, the vector potential satisfies

the Helmholtz equation [1]:

(v2+k2)As=-p.J’ (2)

where k 2 = U2pc, subject to the boundary condition A x A‘

= O on S and (when S extends to infinity) the radiation

condition. Hence, the Coulomb vector potential depends

exclusively on the solenoidal part of the current density J.

The electric field in the Coulomb gauge is given as

E=–juA’– V@

=Es+. Jj[ (3)

where the scalar potential @ satisfies the Poisson equation:

1
v’@= —v-J[ (4)

juc

subject to the condition that @ = O on S and the require-

Manuscript received October 26, 1987; revised April 23, 1988. This lThe solenoidaf (divergenceless) and lamellar (irrotatlonal) parts of
work was supported in part by the Office of Navaf Research under vectors and dyadics are denoted by, respectively, superscripts s and 1, In
Contracts NOO014-87-K-0688 and NOO014-87-K-0193, the literature, the terms “ transverse” and “longitudinal” are also used

The authors are with the Department of Electrical Engineering, Texas interchangeably with, respectively, “ solenoidal” and “ larnellar, ” This
A&M University, College Station, TX 77843. nomenclature is not followed here to avoid confusion with common

IEEE Log Number 8822324. waveguide termmology.

0018 -9480/88/0900-1328 $01.00 01988 IEEE



MICHALSKI AND NEVELS: ON THE USE OF THE COULOMB GAUGE 1329

ment that @ vanish at infinity. Hence, the ~oulomb scalar

potential depends exclusively on the lamellar part of J.
Since @ and thus El can be found relatively easily (this

is illustrated for the rectangular waveguide in the Appen-

dix), we focus here on the determination of A’, and thus

Es (cf. (3)). To facilitate this, we intrqduce the dyadic

Green’s function Q;, which satisfies ‘

(V2+k2)Q~(r[r’) = -tjs(r -r’) (5)

subject to the condition ii X Q ~ = O on S and the radiation

condition at infinity. In the above, ~’ denotes the solenoidal

part of the dyadic delta function ~(r – r’) = ~~(r – r’) =

Qs(r – r’) + ~[(r – r’), where ~ is the idemfactor [3], [5].

Since Q; is solenoidal, the operator v 2 in (5) can be

replaced by – v X v X, if desired.

We recall [6] that the Green’s dyadic for the Lorentz

vector potential A satisfies

(V2+k2)EA(rlr’) =-i3(r-r’)

ix~A=o V“~~=OonS (6)

whereas the Green’s dyadic for the electric field is given as

(V XV X-k2)QE(rlr’) =Q(r- r’)

fiX~E=Oon S (7)

so that

~(~) = – j@p/ QE(rlr’) .J(r’) dr’ (8)
v

where the integration is over the current-carrying volume

V. We observe from the above that the solenoidal parts of

~ ~ and @ are equal, i.e., Q; =G&. Consequently,

Qj(rlr’) = ~ ijs(r– r“). QA(r’’lr’) dr”
v

=/ iY(r-r’’)GE(~”lo dr” (9)
v

We also note that

GJ(rlr’) = – j$~~(r-r’). (lo)

111. DERIVATION OF @ FOR THE RECTANGULAR

WAVEGUIDE BY MEANS OF THE

EIGENFUNCTION EXPANSION

Consider a perfectly conducting rectangular waveguide

aligned along the z axis and with dimensions a and b

along the x and y axes, resp~ctively. To find Q; for this

geometry, we follow the Ohm–Rayleigh method, as de-

scribed by Tai [4]. First, we”’expand SS in (5) as follows:

solenoidal eigenfunctions of the operator v x v x, satis-

fying the Dirichlet boundary conditions at the waveguicle

walls. These vector eigenfunctions: which share the eigen-

values ~’, are generated by the scalar eigenfunctions

$e~~(h) of the operator -v 2 according”to [4]
0

Jf:mn(w ‘v W: MN)

where ~,~~ and ~0~~ satisfy, respectively, the Neumann

and Dirichlet boundary conditions at the waveguide walls.z

For the rectangular waveguide, one easily finds

[

m nx n my
Cos — co~,—

+:mn(h) = a
b

m rx n wy
~ –ihz (13)

sin — sin —
a b

ic’=h’+k;
“=(%)’+(~)’ ’14)

The primed functions kl’ and N’ in (11) depend on the

source coordinates x’, y’, and z’. The meaning of the

symbol 80 in (11) is as follows: 80 = 1 when m = O or

n = O, and 80 = O otherwise.

With (11) in mind, we now expired Q; as [4]

[
a(h)f%mn(h)W’m (-h)

1+$ b(h) NO~n(h)N;~n(–h) . (15)

To evaluate the coefficients a(h) and b(h) we substitute

the expansions (11) and (15) into (5), introduce the oper-

ator v 2 under the integration ancl summation signs on the

left side,3 and make use of the relation v ‘M = – IC2i14and

a s@ilar relation for the N funct~ons. As a result, we find

a(h) =b(h) =;&
g

(16)

where

~s(rlr’) = /m dh ~~o ~~o~ zFor later convenience, we deliberately omit in (12) the inverse ~ factor
—cc c

usually included in defining the N functic,ns. Also, for notational simplic-

[

1 1
ity, the dependence of IC on m, n, and h is not explicitly indicated

~emn ( h ) ~~~n ( – h ) + ~NOn~ ( h ) NO~n( – h) (11) ;&:ghOUt this paper. Similar remarks apply to k< and kg, introduced

3The conditions under which this change of the order of the operators
where Memn and NOM. are, respectively, the even and odd is v~id are discussedin [7].



1330 IEEE TRANSACHONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 36, NO. 9, SEPTEMBER 1988

We can now express (15) in the form

“Nomn(h)-%m”(-h)
I

(18)

which clearly exhibits two sets of poles in the complex h

plane, located at ~ kg and at + jkC ( h = O is a regular

point of the integrand). The integrals in (18) can be easily

evaluated by residue calculus and the result can be ex-

pressed as

G(W) = #j[Gk(rlr’)–Go(r/r’)] (19)

where

[. k’itfem. (f kg)~:m.(~ kg)

+ N&(+ kg)%m.(~ kg)], z+ z’ (20)

and

We observe that go is the static limit of ~~, i.e.,

~o(rlr’) = $yock(rlr’). (22)

We can use ~> in place of ~~ in (8) to find Es. To

obtain E[, we must replace in that equation @ by @,

which is easily derivable from the static scalar potential

(see the Appendix). The complete electric Green’s function

can be obtained as a sum of Q ~ and @ Hence, adding
(19) and (37) we obtain

GE(W) = ~ [@(dr’)-iM8(r - r’)] (23)

which is in agreement with the results derived by different

methods by Tai [8] and Rahmat-Samii [9].4

Finally, we remark that the integral in (11) can also be

evaluated, with the result

~’(r– r’) = (ii?+ jj3)8(r- r’)+~o(rlr’). (24)

‘There are misprints in this reference, as pointed out by Wang [10].

IV. SMYTHE’S APPROACH

Smythe’s approach [2] can be paraphrased as follows.s

Since v A‘ = O, hence A‘ is expressible in terms of two

scalars, say +}’ and +’, Smythe postulates the solenoidal

representation (cf. (2) in [2, sec. 13.00])

A’=vxi#+vxv x?+’. (25)

It is easily shown that (25) satisfies the homogeneous form

of (2) provided that ~h and $’ are solutions of the

homogeneous Helmholtz equation. Therefore, Smythe first

seeks a solution of (2) outside the z = z‘ source plane and

postulates for # and ~’ the formsb

~h(x. y,z)=T~’(x, y)e7J~~(’-Z’)

+’(x, y,z) = TT’(x, y)e~J~J-z’) (26)

where, as before, the upper and lower signs pertain to
z > z‘ and z < z‘, respectively. The separation of variables

procedure results in the transverse eigenvalue problems

(V~+k2)Te}’=0 k~=kZ_k’c g c

Te=o &Th=O on S (27)

where v:= v 2 – ( d 2/dz2). One easily shows that $h and

~’ generate, respectively, fields TE and TM to the z

direction, which was anticipated in the notation. In fact,

these partial fields have the forms (cf. (14)–(17) in [2, sec.

13.00])

Eh = jui X VtT~e-JL~~’-”~

@ = ~ Jkg_VIT{le–/~&Z’l

P

7
H,h = E The-jkg~, -z’~

P

(28)

and

E:= ukgvtT’e-@-z’l

E,e = + juk~Tee-Jk~l’-”l

k’
He = + —~ x vtTee-/kql:-:’l (29)

P

where the subscript t denotes transverse components.

The total field is a superposition of the TE and TM
modes associated with the eigenvalues kc = kcm,~, m, n =

0,1,2 . . . . The still arbitrary expansion coefficients are

determined by enforcing the ‘Ljump” conditions at z = z’

[11]:

?X(H+– H-)= Y,,

%mythe assumes that z > z’, where z’ is the source coordinate. In
describing his approach, we extend it to afso encompass the case z < z‘.

‘iObserve that these forms do not satisfy the homogeneous Helmholtz
equation when z = z’.
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where .1,1 and .l~, are, respectively, the transverse and

longitudinal components of the surface current density,

defined as

~(x, y) = )yJy.l(r)dz. (31)

The superscripts + and – in (30) signify the limits of the

corresponding quantities as z approaches z’ from above

and from below, respectively. Since the TE and TM modes

are mutually orthogonal over the waveguide cross section,

one can apply the jump conditions (30) separately to the

TE and TM partial fields. This is the approach taken by

Smythe, who uses conditions equivalent to (30) (cf. (5) and

(11) in [2, sec. 13.03]).

We are now in a position to comment on the above

procedure. First of all, we note that it is not correct to seek

the solution of (2) outside the source region and to enforce

the jump conditions at z = z‘, since even for a current J
localized at a point in space its solenoidal part J’ occupies

the whole volume of the waveguide. The localized current

assumption makes Smythe’s approach tantamount to ex-

panding the field outside the source in terms of the E and

H waveguide modes, as can be seen by comparing (28) and

(29) with [1, ch. 5, eqs. (6) and (11)]. As is now well known

[12], thk expansion gives the correct field everywhere in

the waveguide, provided that E is augmented by the term

– ?Jz/( ju c). (That this term is needed is evident from the

jump conditions (30), in which the z component of the

electric current is represented in the second of these equa-

tions by an equivalent magnetic current, which is trans-

verse to z. However, these sources are equivalent outside

the current-carrying volume, but not inside, where the

electric field due to the magnetic current must be modified

as indicated above [13].) Hence, as a result of his proce-

dure Smythe obtains the complete field due to the source J
and not just its solenoidal part, as he intended.7 He

therefore errs when he states (cf. statements following (1)

and (7) in [2, sec. 13.03]) that to the field thus obtained one

must add the lamellar part, E’= – v Q, for that part is

already contained in his solution. To recapitulate, Smythe

in effect derives the Green’s function ~~ given in (23), and

not — as he implies—the solenoidal Green’s function ~ j

given in (19). The pitfalls of this approach of expanding

the field in terms of the waveguide modes are easily

avoided if one employs the eigenfunction expansion tech-

nique, as is demonstrated in Section III.

V. DISCUSSION

The attractive feature of the Coulomb gauge is the

explicit separation of the electric field into its lamellar and

solenoidal constituents (cf. (3)). The lamellar part, which

contains the dominant R – 3 singularity, where R is the

distance between the source and the observation points, is

easy to determine, since the scalar potential @ can be

obtained by a simple differentiation of the corresponding

static potential, as shown in the Appendix. (For a few

‘The multiplicative factor j in (6) and (9) of [2, sec. 13.03] is superflu-
ous. Also, the sign of the z component in (6) should be changed to plus.

simple geometries, this potential can be obtained in closed

form by image theory.) The remaining part comprises the

more manageable R-1 singularity and is, of course,

solenoidal everywhere, including the source region. Hence,

if the eigenfunction expansion te;hnique is employed, Es
can be conveniently represented in tei-ms of only the

solenoidal M and N functions, and the lamellar L func-

tions are indeed obviated [4].8

The price paid for these advantages of the Coulomb

gauge is the added difficulty in solving for the vector

potential if the approach is taken of expanding AS (or Es)
in terms of the E and H waveguide modes [1], [12]. [16].

This difficulty is due to the f,~ct that (2), unlike the

corresponding equation in the Lcm-entz gabge, involves the

solenoidal part of J, which is usually a much more com-

plicated function than J itself. For example, J associated

with a point dipole has the simple form of the Dirac delta,

whereas the corresponding ~ and J’ are not localized at a

single point in space (cf. (24) and (38)). These difficulties

in obtaining the Coulomb vector potential can perhaps be

blamed for the subtle error in Smythe’s book [2], which

was written years before the nature of the field in the

source region was fully explored.

As we concluded in the last section, the E and H modal

expansion in effect employed by Smythe [2] leads to a

vector potential that is not solenoidal in the source region.

Denoting this potential by A’, wc therefore have v A’ # O

for r = r’. There are at least two ways of correcting A’

post factum to obtain the correct Coulomb potential, As.

The first is to integrate A‘ against the solenoidal delta

function in a manner indicated in (9). The second way is to

put As= A’+ v+, where, by enforcing the condition v A’
=0, we find that the scalar function + can be found from

v 24 = – v cA’. Both of these methods appear to be more

cumbersome than the eigenfunction expansion technique

followed in Section III.

In summary, the advantages of the Coulomb gauge over

the Lorentz gauge are to a considerable degree offset by

the difficulties associated with its use. We also note in

retrospect that the decomposition of the Green’s function

@ into its solenoidal and lamellar parts can, if desired, be

achieved without recourse to the Coulomb gauge by simply

subtracting from and adding to Q~ the static limit of ~~

(cf. (19), (23), and (37)). This procedure is often followed

to accelerate the convergence c,f the series that arise in

problems involving sources in waveguides and cavities [3],

[17] -[19].

To end on a more optimistic note, we observe from (3)

that the Coulomb gauge leads to an alternative and possi-

bly advantageous form of the so-called mixed-potential

integral equation [20], which is amenable to the efficient

numerical solution technique developed by Rae, Wilton,
and Glisson [21]. The authors intend to pursue this prom-

ising aspect of the Coulomb gauge in a forthcoming paper.

8The inclusion of the lamellar eignefunctions is required to obtain a

complete representation of the total el:ctrlc field in the source region.
Their omission led to an error in [4] (cf. [7,8,14,15]).
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APPENDIX [5]

DERIVATION OF @ FOR THE RECTANGULAR WAVEGUIDE
[6]

The dyadic Green’s function for the lamellar part of the

electric field can be assembled in a few simple steps

beginning with the solution of the static problem
[7]

v2G@(rlr’) = –b(r– r’) (32) ‘8]

where Go must vanish at the waveguide walls and at [9]
infinity. Using @ of (4) and Go in Green’s second identity

[1] and referring to (3) and (8), one can show that

Qj(rlr’) = – $vv’G@’). (33) ’10]

For the case of free space, this result reduces to that of

Howard “[22].
[11]

For the rectangular waveguide, we easily find [2]9
,. -.

mm-x’
GQ(r[r’) =: ~ ~ #sin—

nvy ’
sin —

m=lir=l c a b

L121

[13]

m7rx n my
. sin — _e-k,lz-Z’l (34) ’141sin .

a b
.,

[15]

where kC is defined in (14). The derivatives in (33) pose no

difficulty, with the exception of ~he 6’2/dzi?z’ present in ,~b]

the i?? term of the dyadic, which contributes a Dirac delta,

if one observes that [9], [23]
r171

i12 ~18j
–kclz– Z’l = z~ 8(Z _ ZI)– ~2e–kclz–z’l.

azdzf e
c c (35)

Using this result and the completeness relation [1]
[19]

mrx’
8(x–x’)8(y–y’)=1 E ~ sin—

n7ry ’
sin — [20]

ab ~=1~=1 a b

m 7rx n try
. sin — sin ~ (36) [211

a

we easily show that [22]

C,i(dr’) = j$[G3(dr’)–M8(r- r’)] (37) ’23]

~ with CO defined in (21).

Finally, upon comparing the last result with (10) we

observe that

~l(r– r’) =~jtl(r– r’)–~o(rlr’). (38)
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