1328

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 9, SEPTEMBER 1988
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Abstract —The advantages and difficulties associated with the use of the
Coulomb gauge in solving source-excited boundary value problems of
electromagnetics are examined. The correct dyadic Green’s function for
the Coulomb vector potential in a rectangular waveguide is derived to
elucidate the discussion. A flaw in the usage of the Coulomb gauge in
Smythe’s Static and Dynamic Electricity is uncovered.

I. INTRODUCTION

HE SOLUTION of boundary value problems of elec-

tromagnetics is often facilitated by the introduction of
the scalar and vector potentials, which are related by the
so-called gauge condition [1]. These potentials are not
unique and they depend on the gauge employed, the
Lorentz gauge being the most common choice. Occasion-
ally, the Coulomb gauge is used, usually when there are no
free charges [1]. The main purpose of this paper is to
discuss the advantages and difficulties associated with the
use of the Coulomb gauge in solving source-excited
boundary value problems of electromagnetics. To better
illustrate the ideas, we have selected for detailed analysis
the familiar rectangular waveguide geometry.

Smythe’s classical textbook [2] is the only reference
known to the authors in which the Coulomb gauge is
employed to solve problems involving arbitrarily oriented,
time-harmonic dipoles in waveguides and cavities. How-
ever, Smythe’s analysis contains a subtle flaw, which we
presume is not widely known to the electromagnetics com-
munity. This flaw, its origins and ways to remedy it are
also addressed in this paper.

After the preliminaries of Section II, we derive in Sec-
tion III the Coulomb dyadic Green's function for the
rectangular waveguide by the eigenfunction expansion
method [3], [4], which enables us to identify terms that are
missing in the corresponding expressions given by Smythe
[2]. In Section IV, we summarize Smythe’s approach and
point out its flaw. We draw conclusions and make recom-
mendations in Section V.
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II. PRELIMINARIES

The problem of interest is that of finding the electro-
magnetic field due to a time-harmonic (e/*’ time conven-
tion) dipole in a homogeneous medium characterized by
permittivity € and permeability p and enclosed, at least
partially, by a perfectly conducting surface S having a unit
normal vector #.

We introduce the magnetic vector potential 4 in the
usual manner by relating it to the magnetic field as

1
H=—-v XA
3

1
=—v X A°.
®

1)

It then follows from Maxwell’s equations that under the
Coulomb condition, V-4’ = 0, the vector potential satisfies
the Helmholtz equation [1]:

(Vi+ k) A =—pl’ (2)
where k2 = w?pe, subject to the boundary condition A X 4°
=0 on § and (when S extends to infinity) the radiation
condition. Hence, the Coulomb vector potential depends
exclusively on the solenoidal part of the current density J.

The electric field in the Coulomb gauge is given as

E=—jod’-vo

=E°+E' (3)

where the scalar potential @ satisfies the Poisson equation:

1
Vz(D:—'—V'J/ (4)
j(.OC

subject to the condition that ® =0 on S and the require-

'The solenoidal (divergenceless) and lamellar (irrotational) parts of
vectors and dyadics are denoted by, respectively, superscripts s and /. In
the literature, the terms “transverse” and “longitudinal™ are also used
interchangeably with, respectively, “solenoidal” and “lamellar.” This
nomenclature is not followed here to avoid confusion with common
waveguide terminology.
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ment that @ vanish at infinity. Hence, the Coulomb scalar
potential depends exclusively on the lamellar part of J.

Since ® and thus E’ can be found relatively easrly (this
is illustrated for the rectangular waveguide in the Appen-
dix), we focus here on the determination of A°, and thus
E® (cf. (3)). To facilitate this, we intrqduce the dyadic
Green’s function G, which satisfies :

(VP E)G(rr) = =8 (r = 1) (5)

subject to the condition 4 X G, =0 on S and the radiation
condition at infinity. In the above, 8° denotes the solenoidal
part of the dyadic delta function 8(r — r") = I8(r—r') =
8(r—r)+8'(r—r), where I is the idemfactor [3], [5].
Since G, is solenoidal, the operator V2 in (5) can be
replaced by ~v X v X, if desired.
We recall [6] that the Green’s dyadic for the Lorentz
vector potential A satisfies
(V2 +K2)G ,(rlr") =~ 8(r — )
AixXG,=0 v-G,=0onS (6)
whereas the Green’s dyadic for the electric field is given as
(V XV X =k?)Gg(rlr') =8(r—r')
AXG,=00n S

(7)

so that

E(r) == jop | Gp(rir)-J(r') dr (8)

where the integration is over the current-carrying volume
V. We observe from the above that the solenoidal parts of
G, and Gy are equal, ie., G, =Gj}. Consequently,

Gy(rir) = [ @ (r=r")-G (") dr”
= [ ¥ =) Gy ar. (9)
We also note that
Gi(rir) =~ —8’(r— r'). (10)

III. DERIVATION OF G FOR THE RECTANGULAR
WAVEGUIDE BY MEANS OF THE
EIGENFUNCTION EXPANSION

Consider a perfectly conducting rectangular waveguide
aligned along the z axis and with dimensions a and b
along the x and y axes, respectlvely To find- G, for this
geometry, we follow the Ohm-Rayleigh method as de-
scribed by Tai [4]. First, we expand 8° in (5) as follows:

8(r|r)——f dhz i 2= %

—0 ﬂabkz

Ny ()N (= )| (11)

are, respectively, the even and odd

[ M2, - 1+

where M,,,, and N,

omn
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solenoidal eigenfunctions of the operator ¥ X v X, satis-
fying the Dirichlet boundary conditions at the waveguide
walls. These vector eigenfunctions, which share the eigen-
values k2, are generated by the scalar eigénfunctions

Y., (h) of the operator —v ? according'to [4]

Me,,(h) =V X2ye,,(h)
«(h) (12)
where ¢, and ¢, satisfy, respectively, the Neumann

and Dirichlet boundary conditions at the waveguide walls.?
For the rectangular waveguide, one easily finds

Nemn(h) =V X ]k[em

max nay
cos cos 5
a —jhz
sin sin ——
a b

mm\? [ nw\?
k2=h>+k? kf——-(——) +(—_) . (14)
a b
The primed functions M’ and N’ in (11) depend on the
source coordinates x’, y’, and z’. The meaning of the
symbol &, in (11) is as follows: 8,=1 when m=0 or
n=0, and §, =0 otherwise.
With (11) in mind, we now expand Qi‘ as [4]

fthZ

m=0n=07

[(h) My (1) Ml (— )

G (rir')

bk2

+——b(h) m)l.  (15)

omn \ ) omn(

To evaluate the coefficients a(h) and b(h) we substitute
the expansions (11) and (15) into (5), introduce the oper-
ator v * under the integration and summation signs on the
left side,? and make use of the relation v ?M = — k*M and
a similar relation for the NV functions. As a result, we find

a(h)=b(h)=

n? k2 (16)

where

k*—kZ, k <k
k= L (17)

ol - jikE-kE, k> k.

2For later convenience, we deliberately omit in (12) the inverse « factor
usually included in defining the N functions. Also, for notational simplic-
ity, the dependence of x on m, n, and h is not explicitly indicated
throughout this paper. Srmﬂar remarks apply to k, and k,, mtroduced
later.

’The conditions under which thls change of the order of the operators
is valid are discussed in [7].
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We can now express (15) in the form
2—6,

Zr; go 7ch2

A("|" =

o dh
l: h2 kazMemn(h) emn( h)

o d k; LK
+/ TH2 T Rk

Ny (h) - Ny (= h)]

(18)

which clearly exhibits two sets of poles in the complex 4
plane, located at +k, and at + jk, (h=0 is a regular
point of the integrand). The integrals in (18) can be easily
evaluated by residue calculus and the result can be ex-
pressed as

1
G(rir) = 5 G (nr) = Go(rir)] - (19)
where
1 = » 2-§
G (rr)=—
k(rlr ab mZ=O ngo Jkgk;"Z

(20)

and

2 0
Qo(rlr/) = E Z 0mn(+ Jk ) 0”171(+jk6)’

zzz. (21)
We observe that G, is the static limit of G, i.e.,

Gy(rir) = lim G, (r|F). (22)

We can use G, in place of G in (8) to find E*. To
obtain E’, we must replace in that equation G, by GL,
which is easily derivable from the static scalar potential
(see the Appendix). The complete electric Green’s function
can be obtained as a sum of G’ and GJ. Hence, adding
(19) and (37) we obtain

1
Gp(rlr) = 5 [Gu(rir)-228(r=r)]  (23)
which is in agreement with the results derived by different
methods by Tai [8] and Rahmat-Samii [9].*

Finally, we remark that the integral in (11) can also be

evaluated, with the result

8 (r—r) = (22+ 99)8(r—r)+Gy(rlr'). (24)

*There are misprints in this reference, as pointed out by Wang [10].
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IV. SMYTHE’S APPROACH

Smythe’s approach [2] can be paraphrased as follows.®
Since V-A4° =0, hence 4° is expressible in terms of two
scalars, say " and ¢*, Smythe postulates the solenoidal
representation (cf. (2) in [2, sec. 13.00])

A =7 X3P+ v X v X3y°. (25)

It is easily shown that (25) satisfies the homogeneous form
of (2) provided that " and ¢¢ are solutions of the
homogeneous Helmholtz equation. Therefore, Smythe first
seeks a solution of (2) outside the z = z’ source plane and
postulates for ¢* and ¢¢ the forms®

Y (xp,2) =TH(x, y)et Hm)
Vo(x,p.2) = FTe(x, p)e ™47 (26)

where, as before, the upper and lower signs pertain to
z>z" and z < z’, respectively. The separation of variables
procedure results in the transverse eigenvalue problems

(V2+ k)T =0  kI=k>—k?

ad
T°=0 —T"'=0 onS (27)
an
where V2 =v?—(92/9z?). One easily shows that ¢" and
t

¢ generate, respectively, fields TE and TM to the z
direction, which was anticipated in the notation. In fact,
these partial fields have the forms (cf. (14)—(17) in [2, sec.
13.00])

E" = ju X v, T"e k=71
H +£_le1 —ikglz =2
I

2

k: :
H = == The /K=

FT (28)
and
Ef= wkgV[T"e’fkﬂ”’”
Ef =+ jok2Tée /57
kl
~jhglz— 2] (29)

H¢=+—Zxv,T%
#

where the subscript ¢ denotes transverse components.
The total field is.a superposition of the TE and TM
modes assoclated with the eigenvalues k. =k, , m,n=
0,1,2---. The still arbitrary expansion coefficients are
determined by enforcing the “jump” conditions at z =z’
[11]:

EX(H"-H )=J,

1
(E+~E_)><2=—j7€V,><ﬁJyz (30)

Smythe assumes that z > z/, where z’ is the source coordinate. In
descnbmg his approach, we extend it to also encompass the case z < =’

®Observe that these forms do not satisfy the homogeneous Helmholtz
equation when z =z’
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where J, and J, are, respectively, the transverse and
longitudial components of the surface current density,
defined as

5(xy)=lim [*"(r) e (31)

The superscripts + and — in (30) signify the limits of the
corresponding quantities as z approaches z’ from above
and from below, respectively. Since the TE and TM modes
are mutually orthogonal over the waveguide cross section,
one can apply the jump conditions (30) separately to the
TE and TM partial fields. This is the approach taken by
Smythe, who uses conditions equivalent to (30) (cf. (5) and
(11) in [2, sec. 13.03]).

We are now in a position to comment on the above
procedure. First of all, we note that it is not correct to seek
the solution of (2) outside the source region and to enforce
the jump conditions at z = z’, since even for a current J
localized at a point in space its solenoidal part J* occupies
the whole volume of the waveguide. The localized current
assumption makes Smythe’s approach tantamount to ex-
panding the field outside the source in terms of the E and
H waveguide modes, as can be seen by comparing (28) and
(29) with [1, ch. 5, egs. (6) and (11)]. As is now well known
[12], this expansion gives the correct field everywhere in
the waveguide, provided that E is augmented by the term
—2J, /(jwe). (That this term is needed is evident from the
jump conditions (30), in which the z component of the
electric current is represented in the second of these equa-
tions by an equivalent magnetic current, which is trans-
verse to z. However, these sources are equivalent outside
the current-carrying volume, but not inside, where the
electric field due to the magnetic current must be modified
as indicated above [13].) Hence, as a result of his proce-
dure Smythe obtains the complete field due to the source J
and not just its solenoidal part, as he intended.” He
therefore errs when he states (cf. statements following (1)
and (7) in [2, sec. 13.03]) that to the field thus obtained one
must add the lamellar part, E/'=—v®, for that part is
already contained in his solution. To recapitulate, Smythe
in effect derives the Green’s function G given in (23), and
not—as he implies—the solenoidal Green’s function G
given in (19). The pitfalls of this approach of expanding
the field in terms of the waveguide modes are easily
avoided if one employs the eigenfunction expansion tech-
nique, as is demonstrated in Section III.

V. DiscussioN

The attractive feature of the Coulomb gauge is the
explicit separation of the electric field into its lamellar and
solenoidal constituents (cf. (3)). The lamellar part, which
contains the dominant R~ singularity, where R is the
distance between the source and the observation points, is
easy to determine, since the scalar potential @ can be
obtained by a simple differentiation of the corresponding
static potential, as shown in the Appendix. (For a few

"The multiplicative factor j in (6) and (9) of [2, sec. 13.03] is superflu-
ous. Also, the sign of the z component in (6) should be changed to plus.
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simple geometries, this potential can be obtained in closed
form by image theory.) The remaining part comprises the
more manageable R™! singularity and is, of course,
solenoidal everywhere, including the source region. Hence,
if the eigenfunction expansion technique is employed, E*
can be conveniently represented in terms of only the
solenoidal M and N functions, and the lamellar L func-
tions are indeed obviated [4].2

The price paid for these advantages of the Coulomb
gauge is the added difficulty in solving for the vector
potential if the approach is taken of expanding 4° (or E*)
in terms of the E and H waveguide modes [1]. [12]: [16].
This difficulty is due to the fact that (2), unlike the
corresponding equation in the Lorentz galige, involves the
solenoidal part of J, which is usually a much more com-
plicated function than J itself. For examplé, J associated
with a point dipole has the simple form of the Dirac delta,
whereas the corresponding J* and J' are not localized at a
single point in space (cf. (24) and (38)). These difficulties
in obtaining the Coulomb vector potential can perhaps be
blamed for the subtle error in Smythe’s book [2], which
was written years before the nature of the field in the
source region was fully explored.

As we concluded in the last section, the £ and H modal
expansion in effect employed by Smythe {2] leads to a
vector potential that is not solenoidal in the source region.
Denoting this potential by 4’, we therefore have ¥-A4'# 0
for r=r’. There are at least two ways of correcting A4’
post factum to obtain the correct Coulomb potential, A°.
The first is to integrate A’ against the solenoidal delta
function in a manner indicated in (9). The second way is to
put 4°= A’ +vy, where, by enforcing the condition v-A4°
= 0, we find that the scalar function ¢ can be found from
VA =—v-A4’". Both of these methods appear to be more
cumbersome than the eigenfunction expansion technique
followed in Section III.

In summary, the advantages of the Coulomb gauge over
the Lorentz gauge are to a considerable degree offset by
the difficulties associated with its use. We also note in
retrospect that the decomposition of the Green’s function
G into its solenoidal and lamellar parts can, if desired, be
achieved without recourse to the Coulomb gauge by simply
subtracting from and adding to G the static limit of G,
(cf. (19), (23), and (37)). This procedure is often followed
to accelerate the convergence of the series that arise in
problems involving sources in waveguides and cavities [3],
[17]-[19].

To end on a more optimistic note, we observe from (3)
that the Coulomb gauge leads to an alternative and possi-
bly advantageous form of the so-called mixed-potential
integral equation [20], which is amenable to the efficient
numerical solution technique developed by Rao, Wilton,
and Glisson [21]. The authors intend to pursue this prom-
ising aspect of the Coulomb gauge in a forthcoming paper.

8The inclusion of the lamellar cignefunctions is required to obtain a
complete representation of the total electric field in the source region.
Their omission led to an error in [4] (cf. [7,8,14.15)]).
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APPENDIX
DERIVATION OF G {5 FOR THE RECTANGULAR WAVEGUIDE

The dyadic Green’s function for the lamellar part of the
electric field can be assembled in a few simple steps
beginning with the solution of the static problem

VG (rlr)y==8(r—1r) (32)
where G, must vanish at the waveguide walls and at

infinity. Using ® of (4) and G, in Green’s second identity
[1] and referring to (3) and (8), one can show that

(33)

For the case of free space, this result reduces to that of
Howard [22].
For the rectangular waveguide we easily find [2]°

L
G (rr') =~ pVV'qu(”V')-

* max’ nay’
Gq,(rlr)—-‘— > Z —sm sin
m=1n=1 c b
mmx _ nw
-sin smTye klz=21 - (34)

a

where k_ is defined in (14). The derivatives in (33) pose no
d1ff1cu1ty, with the exception of the 32/dz0z’ present in
the 2% term of the dyadic, which contributes a Dirac delta,
if one observes that [9], (23]

32
——k[z z|_2 _ k2 —k z— z| 35
Fyr kd(z—z) - (35)
Using this result and the completeness relation [1]
max’ nwy’
8(x x)6(y— y)=——2 Zsm sin by
_ m7Xx _ nmy
-sin sin - (36)

we easily show that

1
G (rlr) = 5 [Golrlr) = 228(r=r)]  (37)
with G, defined in (21).
Finally, upon comparing the last result with (10) we
observe that

8'(r—r) =228(r =) = Go(r|¥). (38)
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